- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000000010000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Rahnavard, Ali (1)
-
Ross, Allen (1)
-
Safikhani, Abolfazl (1)
-
Soudbakhsh, Damoon (1)
-
Taheriyoun, Ali R (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Longitudinal omics data (LOD) analysis is essential for understanding the dynamics of biological processes and disease progression over time. This review explores various statistical and computational approaches for analyzing such data, emphasizing their applications and limitations. The main characteristics of longitudinal data, such as imbalancedness, high-dimensionality, and non-Gaussianity are discussed for modeling and hypothesis testing. We discuss the properties of linear mixed models (LMM) and generalized linear mixed models (GLMM) as foundation stones in LOD analyses and highlight their extensions to handle the obstacles in the frequentist and Bayesian frameworks. We differentiate in dynamic data analysis between time-course and longitudinal analyses, covering functional data analysis (FDA) and replication constraints. We explore classification techniques, single-cell as exemplary omics longitudinal studies, survival modeling, and multivariate methods for clinical/biomarker-based applications. Emerging topics, including data integration, clustering, and network-based modeling, are also discussed. We categorized the state-of-the-art approaches applicable to omics data, highlighting how they address the data features. This review serves as a guideline for researchers seeking robust strategies to analyze longitudinal omics data effectively, which is usually complex.more » « lessFree, publicly-accessible full text available June 11, 2026
An official website of the United States government
